Archivo de la categoría: Criptografía cuántica

Comida Post-Cuántica para Ejecutivos organizada por Entrust el 2 de Julio de 2024


Agradezco a Entrust que haya contado conmigo como moderador del debate sobre el reto cuántico y las soluciones postcuánticas en el ámbito de la criptografía.

Porque organiza una «Comida Post-Cuántica para Ejecutivos»: Un evento exclusivo de Entrust para líderes de seguridad IT que tendrá lugar el 2 de Julio de 2024.

La computación cuántica pone en entredicho la robustez de varios algoritmos de criptografía de clave pública frente a la capacidad computacional de los ordenadores cuánticos y obliga a reflexionar sobre como adoptar métodos de cifrado más resistentes que los tradicionales. Esto implica que la adopción de la criptografía post-cuántica (PQC) se está convirtiendo en una necesidad urgente.

Para abordar este desafío y compartir experiencias de diversas industrias, la empresa Entrust organiza un evento exclusivo diseñado para líderes de seguridad IT. La sesión se desarrollará en grupo reducido, y el organizador asignará las plazas, por orden de gestión.

Esta sesión que constará de una ponencia, una demostración del laboratorio post-Cuántico de Entrust y una mesa redonda que moderaré yo, Julián Inza, y que tratará de:

  • La urgencia a la hora de abordar las amenazas de la criptografía post-cuántica (PQC).
  • Casos de uso reales de la migración PQC en diferentes industrias.
  • Los beneficios y desafíos de las firmas longevas resistentes a los algoritmos post-cuánticos.

Es también una oportunidad para conectar con otros líderes de seguridad IT y compartir experiencias sobre la migración PQC.

Para más información:

Laboratorio de Confianza Digital ICADE Garrigues


La Universidad Pontificia Comillas y el despacho de abogados Garrigues, firmaron un convenio para crear el Observatorio ‘Legaltech’, Garrigues-ICADE.

El Observatorio, depende de la Facultad de Derecho (Comillas ICADE), a través del Centro de Innovación del Derecho (CID-ICADE).

En la organización del Observatorio destacan Fernando Vives (Presidente), Iñigo Navarro (Codirector), Moisés Menéndez (Codirector), Ofelia Tejerina (Coordinadora) y Hugo Alonso (Gestión de Proyectos).

Formando parte del Observatorio se han definido ya varios laboratorios:

Ahora se crea el Laboratorio de Confianza Digital ICADE Garrigues y he sido nombrado Director del Laboratorio, lo que para mi es un gran honor.

Aunque todavía estoy recopilando información para incorporarla a la página web del Laboratorio que se creará en el sitio de la Universidad de Comillas quisiera comentar que en este momento estamos dando prioridad al análisis del futuro Reglamento EIDAS2 y a la formulación de la Cartera IDUE que se espera que en unos dos años esté disponible para todos los ciudadanos europeos.

Hemos creado un Enlace de invitación al Canal de Whatsapp del Laboratorio de Confianza Digital en el que comentaremos novedades y al que se pueden conectar las personas interesadas.

Posteriormente organizaremos eventos presenciales con diversos ponentes en las instalaciones de la Universidad.

Y dado que soy de Pamplona y hoy es 6 de julio, pongo esta fotico del chupinazo que se ha disparado a las 12 de la mañana desde el balcón del ayuntamiento para celebrar que hoy comienzan las fiestas de San Fermín.

Video de mi charla en Tecnowebinars sobre Criptografía postcuántica y EIDAS2


El pasado 18 de mayo de 2022 participé como ponente en uno de los eventos organizados por Tecnowebinars, en este caso bajo el auspicio de EADTrust.

Daniel Alguacil fue el introductor.

La charla está dividida en 2 partes.

Una sobre los posibles algoritmos de criptografía de clave pública resistentes a la computación cuantica, con el reto que supone el algoritmo de Shor, que surgirán del proceso de selección desarrollado por el NIST.

Y la otra sobre el reto que supondrá en Europa la modificación del Reglamento EIDAS (EIDAS2), sobre todo en relación con la EUDI Wallet (European Union Digital Identity Wallet). En español, Cartera IDUE (Cartera de Identidad Digital de la Unión Europea).

Posteriormente, en julio de 2022, se publicó por el NIST la selección de algoritmos de criptografía de clave pública de la fase 3 del proceso de de selección de este tipo de algoritmos resistentes a la computación cuántica. Entre otros, dos de los algoritmos seleccionados han sido CRYSTALS KYBER para el intecambio de claves y CRYSTALS DILITHIUM para la firma digital.

El informe del NIST «Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process» está disponible en https://t.co/0i9Jn10lpi

La urgente adopción de la criptografía postcuántica


Criostato de 50 Qubits presentado por IBM en noviembre de 2017

Está generalmente admitido que  los algoritmos criptográficos tienen una vida útil finita, en la que su validez está limitada por los avances en las técnicas de criptoanálisis, por los avances en la informática y por los avances en el conocimiento matemático subyacente que apuntala la criptología.

En el dominio de la computación cuántica se ha producido  un cambio radical en las opciones para llevar a cabo ataques informáticos a los algoritmos criptográficos.

En particular, con el hallazgo del algoritmo de Shor, que hará más rápido encontrar la clave privada a partir de la pública que se utiliza en los algoritmos de clave asimétrica como RSA (Rivest Shamir Adlemann) y ECC (en español CCE, Criptografía de Curva Elíptica), y del Algoritmo de Grover, para simplificar un poco el reto de encontrar la clave secreta en algoritmos de clave simétrica, es preciso replantear la forma en la que se gestionará el cifrado en los contextos en los que sea necesario.

Tal como cabe prever por lo que se conoce de la computación cuántica y partiendo de que la existencia de recursos informáticos cuánticos viables se usará contra las implementaciones de algoritmos criptográficos, se puede asumir que:

  • La robustez de la  criptografía simétrica se reducirá a la mitad. Por ejemplo el algoritmo AES de 128 bits tendrá una robustez equivalente a la que hoy en día tiene una implementación de 64 bits.
  • La criptografía de clave pública basada en matemáticas de curva elíptica no tendrá un nivel de robustez suficiente.
  • La criptografía de clave pública basada en el algoritmo RSA no tendrá un nivel de robustez suficiente.
  • El protocolo Diffie-Helman-Merkle  de negociación de claves no tendrá un nivel de robustez suficiente

Con la llegada de Ordenadores Cuánticos viables, todo lo que se haya  protegido por alguno de los algoritmos que ya se sabe que son vulnerables, estará potencialmente desprotegido.

Existe cierta especulación relativa al momento en el que la computación cuántica será viable y si bien no hay consistencia en las predicciones, es razonable suponer que los Ordenadores Cuánticos serán viables dentro de la vida útil pronosticada a las claves y los algoritmos utilizados por la criptografía actual.

Algunas reflexiones de especialistas nos ponen en guardia respecto a los retos que se deben afrontar.

Los profesores Johannes Buchmann de la Technische Universität Darmstadt y Jintai Ding de la University of Cincinnati, en su publicación de 2008 «Post-Quantum Cryptography»,  señalan «Algunos físicos predijeron que dentro de los próximos 10 a 20 años las computadoras cuánticas serán lo suficientemente potentes como para implementar las ideas de Shor y exponer todos los esquemas de clave públicas existentes. Por lo tanto, necesitamos mirar hacia adelante en un futuro de computadoras cuánticas, y debemos preparar el mundo criptográfico para ese futuro».

El mismo año 2008, el profesor Seth Lloyd del Massachusetts Institute of Technology advirtió «Mis colegas en el MIT y yo hemos estado construyendo Ordenadores Cuánticos sencillos y ejecutando algoritmos cuánticos desde 1996, al igual que otros científicos de todo el mundo. Los  Ordenadores Cuánticos funcionan tal como se esperaba. Si se pueden escalar, a miles o decenas de miles de qubits desde su actual tamaño de en torno a una docena de qubits, ¡cuidado! «

Ya el año 2004 el profesor  Johannes Buchmann, y otros colegas, en la publicación «Post-Quantum Signatures», señaló «Hay altas probabilidades   de que se puedan construir grandes Ordenadores Cuánticos dentro de los próximos 20 años. Esto podría convertirse en una pesadilla para la seguridad de Tecnologías de la Información si en ese tiempo no se desarrollan, implementan y normalizan  esquemas de firma post-cuántica.

No cabe duda de que la computación cuántica viable se agregará al arsenal de herramientas de los criptoanalistas  en torno al año 2030, o, probablemente antes, por el ritmo con el que se acelera la investigación en la computación cuántica, que están convirtiendo los nuevos retos más en problemas de ingeniería que de ciencia.

La cantidad de qubits necesarios para realizar un ataque práctico a los criptosistemas sigue siendo significativa. La mayoría de los expertos sugieren que dada una longitud de  clave L, serán necesarios equipos cuánticos con un número de qubits de entre L y L al cuadrado.

En la actualidad ya existen equipos en los laboratorios con 50 qubits.

Un Libro Blanco del ETSI (Quantum Safe Cryptography and Security; An introduction, benefits, enablers and challenges ) (reproducido aquí) sugiere que las técnicas de comunicación segura cuántica no son compatibles con las técnicas en uso generalizado en la actualidad en productos potencialmente vulnerables a los ataques cuánticos. En una transición tecnológica razonable, existe un período de tiempo en el que los nuevos productos se adoptan gradualmente y los productos preexistentes se van dejando de utilizar. En la actualidad pueden coexistir productos seguros en términos de criptografía cuántica  y productos vulnerables, mientras se prepara la transición.

Sin embargo, cada vez hay menos tiempo para gestionar adecuadamente una transición ordenada por lo que debe ser urgente diseñar y adoptar productos, servicios y algoritmos de seguridad preparados para un contexto en el que las herramientas cuánticas estarán disponibles. Y en ese contexto, retomarán un nuevo protagonismo los sistemas de cifrado simétrico, junto con los nuevos Multivariate public key cryptosystems (MPKC) y Lattice-based cryptography (que podemos traducir como criptografía reticular, teselar o basada en celosías).