Archivo de la categoría: Computación Cuántica

El NIST publica los primeros estándares de criptografía resistente a la computación cuántica


El pasado 13 de agosto de 2024 el NIST ha publicado la versión final de los primeros estándares de criptografía resistente a la computación cuántica (Quantum Safe cryptography standards ) que habían estado circulando en versión «borrador»,

La criptografía, un pilar fundamental para la seguridad en la era digital de muchos sectores, ha sido desafiada por los avances en la computación cuántica. La llegada gradual de computadoras cuánticas con tamaños en qubits cada vez más grandes plantea amenazas significativas a los sistemas criptográficos tradicionales, que han sido la base de la seguridad informática durante décadas.

Por ello, tras e impulso del NIST, de ETSI y de otros organismos, se han desarrollado nuevos estándares de criptografía resistente a la computación cuántica que han superado un proceso de selección tras analizar las propiedades de diferentes algoritmos candidatos.

Los algoritmos criptográficos clásicos, como RSA y ECC (Elliptic Curve Cryptography), se basan en problemas matemáticos que son difíciles de resolver con las computadoras convencionales. Sin embargo, las computadoras cuánticas, aprovechando principios como la superposición y el entrelazamiento cuántico, podrían resolver estos problemas exponencialmente más rápido, comprometiendo la seguridad de la información protegida por estos métodos clásicos.

El algoritmo de Shor, uno de los algoritmos cuánticos más famosos, publicado en 1999, es capaz de factorizar números grandes en un tiempo mucho más corto que los métodos tradicionales, lo que pondría en riesgo la criptografía basada en RSA. Para la criptografía ECC también existe una variante del algoritmo de Shor. Todavía son necesarios tamaños en qubits de ordenadores cuánticos mucho mayores que los disponibles en la actualidad, pero cada pocos meses se van publicando nuevos logros de grandes empresas o de algunos estados con ordenadores cuánticos cada vez más potentes que marcan el camino hcia la «supremacía cuántica».

Ante esta amenaza, investigadores y organizaciones especializadas de todo el mundo han estado desarrollando y evaluando algoritmos criptográficos que, pese a usar métodos computacionales «no cuánticos» sean resistentes a los ataques cuánticos. Estos algoritmos, enmarcados en la denominada criptografía post-cuántica, están diseñados para ser seguros incluso frente a las computadoras cuánticas más potentes.

En agosto de 2024 se han publicado los primeros estándares oficiales de criptografía «Quantum Safe» que incluyen una serie de algoritmos recomendados y pautas para su implementación, y que han sido rigurosamente evaluados por la comunidad científica y las agencias de seguridad.

La publicación de estos estándares no es solo un avance técnico, sino también una llamada a la acción para gobiernos, empresas y profesionales de la seguridad en todo el mundo, para que se preparen para el día en el que llegue el «Criptocalipsis».

La transición hacia la criptografía «Quantum Safe» no será inmediata, pero es crucial que comience cuanto antes. Los sistemas actuales deberán ser actualizados o reemplazados y conviene que cada institución analice el uso que hace de la criptografía realice un análisis de riesgos y empiece a preparar la planificación que le permita adoptar los algoritmos «postcuánticos».

La publicación de los estándares de criptografía resistente a la computación cuántica marca el comienzo de una nueva era en la seguridad digital. A medida que avanzamos hacia un futuro donde la computación cuántica se vuelve una realidad, la adopción de estos nuevos estándares será fundamental para proteger la información y mantener la confianza en los sistemas de comunicación y transacciones globales. Es un momento decisivo para la criptografía, y los nuevos estándares servirán de guía hacia un futuro más seguro en el mundo cuántico que está llegando.

Principio de acuerdo entre Qureka y EADTrust 


Los días 14 y 15 de enero de 2024, El Observatorio Legaltech Garrigues-ICADE organizó un taller práctico sobre computación cuántica con sus colaboradores, para para evaluar qué impacto tendrá este tipo de tecnología en el ámbito legal. Los profesores Jorge Christen y Araceli Venegas aplicaron la metodología ENSAR (Experience Name, Speak, Apply and Repeat) y la Qureka! Box, pequeñas manualidades para ver y tocar aspectos como el entrelazamiento cuántico y la superposición cuántica.

Se presentaron algunos hitos de la física cuántica de la mano de sus descubridores, desde finales del sigo XIX hasta llegar a la computación cuántica que se aplica ya en el siglo XXI. Como colofón, los asistentes realizaron ejercicios de computación cuántica gracias al Quantum Composer de IBM.

Yo era uno de los alumnos, y para mi fue una de las experiencias más estimulantes de los últimos años, que me permitió ver la conexión entre la física cuántica y la computación de una forma inesperada.

Además, en mi caso, dado que utilizo la criptografía de clave pública a nivel profesional, ya había percibido el reto que suponía el algoritmo de Shor para considerar que hay que explorar algoritmos de clave pública alternativos a RSA y ECC lo antes posible. Pero esa inquietud indeterminada ha dado paso a una percepción más concreta respecto a la forma en que trabajan los criptoanalistas cuánticos.

De modo que este Taller está marcando en estos momentos la agenda y las prioridades de mi actividad profesional a corto plazo.

Ahora desde EADTrust podemos anunciar un principio de acuerdo con Qureka ya que ayer mantuvimos una productiva reunión con Jorge Christen y Alberta Gava para impulsar activamente la oferta formativa de Qureka entre nuestros clientes, tanto en modelos presenciales como telemáticos.

También lanzamos, combinando el conocimiento de los especialistas de Qureka y los de EADTrust un nuevo servicio de análisis de riesgos con un enfoque GRC (siglas en inglés de «Governance, Risk, and Compliance») para ayudar a las empresas que utilizan algún tipo de criptografía a entender el riesgo que supone la computación cuántica en sus procesos digitales, de modo que pueden planificar con tiempo la forma de gestionarlo.

Preparando la transición postcuántica


Tras la interesantísima sesión postcuántica de ayer patrocinada por Entrust, quedé gratamente impresionado por los servicios PQLab que está ofreciendo la entidad a sus clientes.

La ponencia estratégica/técnica impartida por Rocío Martínez y Juan Carlos Fernández, desveló muchos puntos claves de lo que podría llegar a ser el «Criptocalipsis» («Cryptocalypse» en inglés), el momento en que se generalice lo suficiente el empleo de la computación cuántica para encontrar la clave privada asociada al certificado de cualquier documento firmado electrónicamente (por ejemplo).

El algoritmo de Shor establece el tamaño en qubits de los ordenadores cuánticos capaces de descifrar claves privadas de los principales algoritmos de cifrado asimétrico. Con 2.330 qubits ya se pueden atacar claves ECDSA (y de otros algoritmos basados en curvas elípticas) de 256 bits, y con 4.098 qubits se pueden atacar claves RSA de 2.048 bits.

IBM presentó a finales de 2023 la generación Condor, un procesador cuántico que gestiona 1.121 qubits. Según mejora la gestión del ruido en la computación cuántica los posibilidades de este tipo de ordenadores serán imbatibles en varios tipos de problemas, básicamente intratables con computación convencional.

Por tanto, no conviene aplazar excesivamente el análisis de riesgos y otros aspectos metodológicos de la adecuación de las entidades a la exposición cuántica de la criptografía que se utiliza en diferentes contextos en la propia entidad.

Recomiendo a los clientes de Entrust que contacten con su proveedor para colaborar en ese análisis de riesgos y para probar las herramientas que ya ofrece.

El criptoanálisis y la normalización de los algoritmos criptográficos requieren tiempo y esfuerzo para que los gobiernos y la industria confíen en su seguridad, y aquí merece la pena mencionar las actividades del NIST y de ETSI.

El NIST inició un proceso para solicitar, evaluar y normalizar uno o más algoritmos criptográficos de clave pública resistentes al criptoanálisis cuántico. Ofrece una interesante página sobre normalización de la criptografía postcuántica.

También el ETSI está adoptando un enfoque proactivo para definir las normas que protegerán la información información ante el avance tecnológico de la computación cuántica.

Ha creado un grupo de trabajo sobre criptografía segura frente a la computación cuántica (Quantum Safe Cryptography, QSC) que tiene como objetivo evaluar y hacer recomendaciones sobre protocolos de primitivas criptográficas seguras frente a la cuántica y consideraciones de implementación, teniendo en cuenta tanto el estado actual de la investigación académica sobre criptografía y algoritmos cuánticos como los requisitos industriales para su despliegue en el mundo real. Se busca la implementación práctica de primitivas cuánticas seguras, incluyendo consideraciones de rendimiento, capacidades de implementación, protocolos, evaluación comparativa y consideraciones arquitectónicas prácticas para aplicaciones específicas.

Este grupo tiene en cuenta las propiedades de seguridad de los algoritmos y protocolos propuestos junto con consideraciones prácticas, como arquitecturas de seguridad extensibles y costes de cambio de tecnología, que permitirán que estas recomendaciones sean compatibles con diversos casos de uso industrial. se realizan comparaciones pragmáticas y caracterizaciones y recomendaciones concretas para ayudar a la comunidad tecnológica mundial a seleccionar y desplegar las mejores alternativas de seguridad cuántica disponibles.

Para ayudar a la comunidad a preparar sus sistemas digitales para la era de los ordenadores cuánticos, ETSI ha publicado el «Technical report TR 103 619 en el que se definen las estrategias de migración y las recomendaciones para los esquemas «Quantum-Safe», y se mejora la concienciación sobre la criptografía en todos los sectores empresariales